Condensed Matter Theory Seminar | June 03, 14:00
Fractional quantum Hall physics in lattice systems
The fractional quantum Hall effect, which can be realized in certain two-dimensional systems at low temperature and high magnetic field, leads to many interesting properties, such as the possibility to have anyonic quasiparticles that are neither bosons nor fermions. There is currently much interest in investigating the possibilities for having fractional quantum Hall physics in lattice systems, both because it may lead to new ways to realize the effect, and because the lattice gives rise to new features and opportunities. Here, we propose a quite general approach based on conformal field theory to obtain lattice fractional quantum Hall models. The models have analytical ground states, and we use Monte Carlo simulations to compute, e.g., topological entanglement entropies and shape and statistics of anyons. We also discuss how one can interpolate between lattice and continuum fractional quantum Hall models and propose a scheme to implement a related model in ultracold atoms in optical lattices.
Anne Nielsen, MPI-PKS Dresden
Seminar room 0.03, ETP
Contact: not specified