Theorie Kolloquium | October 14, 14:30
Computing stationary states by message-passing
Computing marginals of probability distributions (magnetizations, spin-spin correlations etc) is an important problem in statistical physics of disordered systems and many other fields. In decision problems one typically wants to estimate the likelihood that a single variable takes a given value, given the interactions with all the other variables, then fix that variable to its most likely value, and so estimate the most likely configuration of all the variables. An important technical application is decoding in communication systems, where the task is to estimate the code word most likely to have been sent from the recieved signal and what one knows about the channel. In principle one can compute the marginals of any Markov chain by Monte Carlo, but such methods are inherently slow for large systems. Over the last decade there has therefore been intense interest in approximate methods to compute marginals of probability distributions deterministically (the cavity method, Belief Propagation, iterative decoding), which overall work by nodes (representing variables) sending messages between each other and so collectively yield sometimes exact and often very good estimates of the marginals. In the language of physics all these methods compute a variational ansatz of the Boltzmann-Gibbs free energy of an equilibrium statistical mechanical system where the messages are related to Lagrange multipliers. I will describe recent work on extending message-passing from computing the stationary states of Markov chains obeying detailed balance to Markov chains which do not. This "dynamic cavity method" works to some extent, and in particular outperforms dynamic mean-field methods on standard kinetic (non-equilibrium) Ising systems. This is joint work with Hamed Mahmoudi (2011a-c), building on earlier work by Montanari and co-workers (2009) and Neri and Bolle (2009).
Erik Aurell, KTH Royal Institute of Technology, Sweden, and Aalto University, Finland
Seminarraum Theoretische Physik
Contact: not specified